If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.5x^2-21x+20=0
a = 4.5; b = -21; c = +20;
Δ = b2-4ac
Δ = -212-4·4.5·20
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-9}{2*4.5}=\frac{12}{9} =1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+9}{2*4.5}=\frac{30}{9} =3+1/3 $
| 1.50p=5 | | -3c-4=+2 | | 60+60+5x-3=180 | | -66=11x | | (x*6)-(x-1)=76 | | X+2/5=x-1/3 | | 5(x+12=7+5x | | 2^x=x+2 | | 1.6-0.8x=x | | 7x+29=93/2 | | -5=5(w-5)-7w | | 6x-5=7x-10=180 | | 3/x+1/2x=1/2 | | 6n-7n-4+n=6n+(-7n)+(-4)+1n | | –6+2d=–4 | | 6n-12=22 | | -4(2u-5)+3u=7(u+5) | | 6x-5=7x10=180 | | 7x+29=93 | | 23x=97 | | Y=9v-18 | | 25x+20=-120 | | 10a-5=20 | | 5q=2q+14 | | -2(-7w+4)-5w=3(w-3)-7 | | 5(x+6)=-5x+9 | | 180=102+(4x+6)+x | | 62+3x=180 | | 5.2+y=1.3 | | 2(2x-1)=-2(x+3) | | 150b=210 | | 6x+3+4x+1=45 |